The
Complete

Reference

C++: The Complete Reference

not provide. In this chapter we will examine one of them: the expression parser.
An expression parser is used to evaluate an algebraic expression, such as
(10 - 8) * 3. Expression parsers are quite useful and are applicable to a wide range of
applications. They are also one of programming's more elusive entities. For various
reasons, the procedures used to create an expression parser are not widely taught or
disseminated. Indeed, many otherwise accomplished programmers are mystified by
the process of expression parsing.

Expression parsing is actually very straightforward, and in many ways easier than
other programming tasks. The reason for this is that the task is well defined and works
according to the strict rules of algebra. This chapter will develop what is commonly
referred to as a recursive-descent parser and all the necessary support routines that
enable you to evaluate numeric expressions. Three versions of the parser will be
created. The first two are nongeneric versions. The final one is generic and may be
applied to any numeric type. However, before any parser can be developed, a brief
overview of expressions and parsing is necessary.

While Standard C++ is quite extensive, there are still a few things that it does

Expressions

Since an expression parser evaluates an algebraic expression, it is important to understand
what the constituent parts of an expression are. Although expressions can be made up of all
types of information, this chapter deals only with numeric expressions. For our purposes,
numeric expressions are composed of the following items:

B Numbers
B The operators +,~, /,*, ", %, =
B Parentheses
B Variables
For our parser, the operator A indicates exponentiation (not the XOR as it does in C++),

and = is the assignment operator. These items can be combined in expressions according
to the rules of algebra. Here are some examples:

10-8
(100-5)*14/6
a+b-c

1075

a=10-b

Chapter 40: Parsing Expressions

Assume this precedence for each operator:

highest + — (unary)
A
*/ %
+-

lowest =

Operators of equal precedence evaluate from left to rigl

In the examples in this chapter, all variables are single letters (in other words,
26 variables, A through Z, are available). The variables are not case sensitive (a and A
are treated as the same variable). For the first version of *he parser, all numeric values
are elevated to double, although you could easily write the routines to handle other
types of values. Finally, to keep the logic clear and easy to understand, only a minimal
amount of error checking is included.

Parsing Expressions: The Problem

If you have not thought much about the problem of expression parsing, you might assume
that it is a simple task. However, to better understand the problem, try to evaluate this
sample expression:

10-2%3

You know that this expression is equal to the value 4. Although you could easily create
a program that would compute that specific expression, the question is how to create a
program that gives the correct answer for any arbitrary expression. At first you might
think of a routine something like this:

a = get first operand
while(operands present) {
op = get operator
b = get second operand

a=aopb

965

966 (++: The Complete Reference

This routine gets the first operand, the operator, and the second operand to perform
the first operation and then gets the next operator and operand to perform the next
operation, and so on. However, if you use this basic approach, the expression 10 -2 * 3
evaluates to 24 (that is, 8 * 3) instead of 4 because this procedure neglects the precedence
of the operators. You cannot just take the operands and operators in order from left
to right because the rules of algebra dictate that multiplication must be done before
subtraction. Some beginners think that this problem can be easily overcome, and
sometimes, in very restricted cases, it can. But the problem only gets worse when you
add parentheses, exponentiation, variables, unary operators, and the like.

Although there are a few ways to write a routine that evaluates expressions, the
one developed here is the one most easily written by a person. It is also the most common.
The method used,here is called a recursive-descent parser, and in the course of this chapter
you will see how it got its name. (Some of the other methods used to write parsers
employ complex tables that must be generated by another computer program. These
are sometimes called table-driven parsers.)

| Parsing an Expression
There are a number of ways to parse and evaluate an expression. For use with a recursive-
descent parser, think of expressions as recursive data structures—that is, expressions that
are defined in terms of themselves. If, for the moment, we assume that expressions can
only use +, -, *,/, and parentheses, all expressions can be defined with the following rules:

expression —> term [+ term] [~ term]
term —> factor [* factor] [/ factor]

factor —> variable, number, or (expression)

The square brackets designate an optional element, and the —> means produces. In fact,
the rules are usually called the production rules of the expression. Therefore, you could say:
"Term produces factor times factor or factor divided by factor” for the definition of ferm.
Notice that the precedence of the operators is implicit in the way an expression is defined.

The expression

10+5*B

Chapter 40: Parsing Expressions 967

has two terms: 10, and 5 * B. The second term contains two factors: 5 and B. These faciors
consist of one number and one variable.
On the other hand, the expression

14*(7-C)

has two factors: 14 and (7 — C). The factors consist of one number and one parenthesized expression.
The parenthesized expression contains two terms: one number and one variable.

This process forms the basis for a recursive-descent parser, which is a set of mutually
recursive functions that work in a chainlike fashion and implement the production rules.
At each appropriate step, the parser performs the specified operations in the algebraically
correct sequence. To see how the production rules are used to parse an expression, let's
work through an example using this expression:

9/3 - (100 + 56)

Here is the sequence that you will follow:

1. Get the first term, 9/3.
2. Get each factor and divide the integers. The resulting value is 3.

3. Get the second term, (100 + 56). At this point, start recursively analyzing the
second subexpression.

4. Get each term and add. The resulting value is 156.

5. Return from the recursive call, and subtract 156 from 3. The answer is ~153.

If you are a little confused at this point, don't feel bad. This is a fairly complex
concept that takes some getting used to. There are two basic things to remember about
this recursive view of expressions. First, the precedence of the operators is implicit in
the way the production rules are defined. Second, this method of parsing and evaluating
expressions is very similar to the way humans evaluate mathematical expressions.

The remainder of this chapter develops three parsers. The first will parse and evaluate
floating-point expressions of type double that consist only of constant values. Next,
this parser is enhanced to support the use of variables. Finally, in the third version, the
parser is implemented as a template class that can be used to parse expressions of

any type.

968 C++: The Complete Reference

___| The Parser Class

The expression parser is built upon the parser class. The first version of parser is shown
here. Subsequent versions of the parser build upon it.

class parser‘{
char *exp ptr; // points to the expression
char token(80]; // holds current token
char tok_type; // holds token's type

void eval_exp?2 (double &result) ;

(
void eval_exp3 (double &result) ;
void eval_exp4 (double &result) ;
void eval_exp5 (double &result) ;
void eval_exp6 (double &result) ;
void atom(double &result) :
void get_token();
void serror{int error);
int isdelim(char c):
public:
parser () ;
double eval_exp (char *exp) ;

Y

The parser class contains three private member variables. The expression to be
evaluated is contained in a null-terminated string pointed to by exp_ptr. Thus, the
parser evaluates expressions that are contained in standard ASCII strings. For example,
the following strings contain expressions that the parser can evaluate:

"10-5"
"2%33 /(31416 * 3.3)"

When the parser begins execution, exp_ptr must point to the first character in the
expression string. As the parser executes, it works its way through the string until the
null-terminator is encountered.

The meaning of the other two member variables, token and tok_type, are described
in the next section.

The entry point to the parser is through eval_exp(), which must be called with a
pointer to the expression to be anal yzed. The functions eval_exp2() through eval_expé6()
along with atom() form the recursive-descent parser. They implement an enhanced set
of the expression production rules discussed earlier. In subsequent versions of the parser,
a function called eval_exp1() will also be added.

Chapter 40: Parsing Expressions

The serror() handles syntax errors in the expression. The functions get_token()
and isdelim() are used to dissect the expression into its component parts, as described
in the next section.

___| Dissecting an Expression

In order to evaluate expressions, you need to be able to break an expression into its
components. Since this operation is fundamental to parsing, let's look at it before
examining the parser itself.

Each component of an expression is called a toker. For example, the expression

A*B— (W +10)

contains the tokens A, *, B, -, ((W, +, 10, and). Each token represents an indivisible unit
of the expression. In general, you need a function that sequentially returns each token
in the expression individually. The function must also be able to skip over spaces and
tabs and detect the end of the expression. The function that we will use to perform this
task is called get_token(), which is a member function of the parser class.

Besides the token, itself, you will also need to know what type of token is being
returned. For the parser developed in this chapter, you need only three types: VARIABLE,
NUMBER, and DELIMITER. (DELIMITER is used for both operators and parentheses.)

The get_token() function is shown here. It obtains the next token from the expression
pointed to by exp_ptr and puts it into the member variable token. It puts the type of the
token into the member variable tok_type.

// Obtains the next token.
void parser::get_token()
{

register char *temp;

tok_type = 0;
temp = token;
*temp = '\0"';
if (! *exp_ptr) return; // at end of expression

while (isspace (*exp_ptr)) ++exp_ptr; // skip over white space

if (strchr("+-*/%"=()", *exp_ptr)) {
tok_type = DELIMITER;

969

970 C++: The Complete Reference

// advance to next char
*temp++ = *exp_ptr++;

}

else if (isalpha(*exp_ptr))
while(!isdelim(*exp_ptr)) *temp++ = *exp _ptr++;
tok_type = VARIARLE;

}

else if (isdigit(*exp_ptr)) {
while(!isdelim(*exp_ptr)) *temp++ = *exp _pLr++;
tok_type = NUMBER;

// Return true if ¢ is a delimiter.
int parser::isdelim(char c¢)
{
if(strchr (" +-/*%"=()", <) || ¢c==9 || c=='\r' || c==0)
return 1;

return 0;

Look closely at the preceding functions. After the first few initializations, get_token()
checks to see if the null terminating the expression has been found. It does so by checking
the character pointed to by exp_ptr. Since exp_ptr is a pointer to the expression being
analyzed, if it points to a null, the end of the expression has been reached. If there are
still more tokens to retrieve from the expression, get_token() first skips over any leading
spaces. Once the spaces have been skipped, exp_ptr is pointing to either a number, a
variable, an operator, or if trailing spaces end the expression, a null. If the next character
is an operator, it is returned as a string in token, and DELIMITER is placed in tok_type.
If the next character is a letter instead, it is assumed to be one of the variables. It is
returned as a string in token, and tok_type is assigned the value VARIABLE. If the
next character is a digit, the entire number is read and placed in its string form in token
and its type is NUMBER. Finally, if the next character is none of the preceding, it is
assumed that the end of the expression has been reached. In this case, token is null,
which signals the end of the expression.

As stated earlier, to keep the code in this function clean, a certain amount of error
checking has been omitted and some assumptions have been made. For example, any
unrecognized character may end an expression. Also, in this version, variables may be
of any length, but only the first letter is significant. You can add more error checking
and other details as your specific application dictates.

Chapter 40: Parsing Expressions

To better understand the tokenization process, study what it returns for each token
and type in the following expression:

A+100-(B*C) /2

Token Token type
A VARIABLE
+ DELIMITER
100 NUMBER

— DELIMITER
(DELIMITER
B VARIABLE

* DELIMITER
C VARIABLE

) DELIMITER
/ DELIMITER
2 NUMBER
null null

Remember that token always holds a null-terminated string, even if it contains just
a single character.

___| A simple Expression Parser
Here is the first version of the parser. It can evaluate expressions that consist solely of
constants, operators, and parentheses. It cannot accept expressions that contain variables.

/* This module contains the recursive descent
parser that does not use variables.
*/

#include <iostream>
#include <cstdlib>
#include <cctype>
#include <cstring>

971

972 C++: The Complete Reference

using namespace std;
enum types { DELIMIZTER = 1, VARIABLE, NUMBER};

class parser {

char *exp_ptr; // points to the expression
char token([80]; ,// holds current token
char tok_type; // holds token's type

i

void eval_exp2 (double &result

7

void eval_exp3 (double &result

’

)
)
void eval_expd (double &result);
void eval_exp5 (double &result)
)

7

void eval_exp6 (double &result
void atom(double &result);
void get_token() ;
void serror (int error);
int isdelim(char c);
public:
parser () ;
double eval_exp(char *exp):
Y

// Parser constructor.
parser: :parser ()
{

exp_ptr = NULL;

// Parser entry point.
double parser::eval_exp(char *exp)
{

double result;
exp_ptr = exp;

get_token();

if (t*token) {
serror(2); // no expression present
return 0.0;

}

eval_exp2 (result) ;

Chapter 40: Parsing Expressions 973

if (*token) serror(0); // last token must be null
return result;

// Add or subtract two terms.
void parser::eval‘exp2(double &result)
{

register char op;

double temp;

eval expi(result);
while((op = *token) == '+' || op == '-") |
get_token{);
eval exp3(temp);
switch(op) {
case '-':
result = result - temp;
break;
case '+':
result = result + temp;
break;

[
-

// Multiply or divide two factors.
void parser::eval_exp3(double &result)
{

register char op;

double temp;

eval_expd (result);
while((op = *token) == '*' || op == "/’ [l op == '%") |
get_token();
eval_expd (temp) ;
switch(op) {
case '*':
result = result * temp;
break;

case '/':

1

result result / temp;

break;

974

C++: The Complete Reference

case '%':
result = (int) result % (int) temp;
break;
}
}
}
// Process an exponent .
void parser::eval_exp4 (double &result)
{
double temp, ex;
register int t;
eval_expS (result) ;
if (*token== '~v) ¢
get_token();
eval_expd (temp) ;
ex = result;
if (temp==0.0) {
result = 1.0;
return;
}
for (t=(int)temp-1; t>0; --t) result = result * (double) ex;
}
}
// Evaluate a unary + or -.
void parser::eval_exp5(double &result)
{
register char op;
op = 0;
if((tok_type == DELIMITER) && *token=='+" || *token == '-1)
op = *token;
get_token () ;

}
eval_expé6 (result) ;

if(op=='-') result =

// Process a parenthesized expression.
void parser::eval_exp6 (double &result)

~result;

{

if((*token == (")) {
get_tokeni);
eval exp?2lresult);
if (*token = ") ")
serror (1) ;

get_token (};
}

else atomiresult);

// Get the value of a number.
void parser::atom(double sresult)

{

switch(tok_type) {
case NUMBER:
result = atof(token);
get_token();
return;
default:
serror{0);

// Display a syntax error.
void parser::serror(int error)
{
static char *ell= {
"gyntax Error",
"“Unbalanced Parentheses”,
"No expression Present”

cout << elerror! << endl;

// Obtain the next token.
void parser::get_token()

{
register char *temp;

tok_type = 0;
temp = token;

Chapter 40:

Parsing Expressions

975

976

C++: The Complete Reference

*temp = '\0';
if(!*exp_ptr) return; // at end of expression
while(isspace(*exp_ptr)) ++exp_ptr; // skip over white space

if (strchr("+-*/%"=()", *exp_ptr)){
tok_type = DELIMITER;
// advance to next char
*temp++ = *exp_ptr++;

1
J

else if(isalpha(*exp_ptr)) {
while(!isdelim(*exp_ptr)) *temp++ = *exXp_ptr++;
tok_type = VARIABLE;

}

else if(isdigit(*exp_ptr)) {
while(!isdelim(*exp_ptr)) *temp++ = *exp_ptr++;
tok_type = NUMBER;

*temp = '\0"';

// Return true if c is a delimiter.
int parser::isdelim(char c)
{
if(strchr (" +-/*%"=()", c) || c==9 || e=="\r' || c==0)
return 1;
return 0;

The parser as it is shown can handle the following operators: +, -, *, /, %. In addition,
it can handle integer exponentiation (%) and the unary minus. The parser can also deal
with parentheses correctly. The actual evaluation of an expression takes place in the
mutually recursive functions eval_exp2() through eval_exp6(), plus the atom() function,
which returns the value of a number. The comments at the start of each function describe
what role it plays in parsing the expression.

The simple main() function that follows demonstrates the use of the parser.

int main{()

{

Chapter 40: Parsing Expressions 977

char expstr[80];
cout << "Enter a period to stop.\n";
parser ob; // instantiate a parser

for(;;) {
cout << "Enter expression: ";
cin.getline(expstr, 79);
1f (*expstr=='."') break;
cout << "Answer 1s: " << ob.eval_expl(expstr) << "\n\n";

Here is a sample run.

Enter a period to stop.
Enter expression: 10-2*3
Answer is: 4

Enter expression: (10-2)*3
Answer 1s: 24

Enter expression: 10/3
Answer is: 3.33333

Enter expression:

Understanding the Parser

To understand exactly how the parser evaluates an expression, work through the
following expression. (Assume that exp_ptr points to the start of the expression.)

10-3*2

When eval_exp(), the entry point into the parser, is called, it gets the first token. If
the token is null, the function prints the message No Expression Present and returns.
However, in this case, the token contains the number 10. Since the first token is not null,
eval_exp2() is called. As a result, eval_exp2() calls eval_exp3(), and eval_exp3() calls

978

C++: The Complete Reference

eval_exp4(), which in turn calls eval_exp5(). Then eval_exp5() checks whether the
token is a unary plus or minus, which in this case it is not, so eval_exp6() is called. At
this point eval_exp6() either recursively calls eval_exp2() (in the case of a parenthesized
expression) or calls atom() to find the value of a number. Since the toker is not a left
parentheses, atom() is executed and result is assigned the value 10. Next, another token
is retrieved, and the functions begin to return up the chain. Since the token is now the
opetator —, the functions return up to eval_exp2().

What happens next is very important. Because the token is —, it is saved in op. The
parser then gets the next token, which is 3, and the descent down the chain begins again.
As betore, atom() is entered. The value 3 is returned in result, and the token * is read.
This causes a return back up the chain to eval_exp3(), where the final token 2 is read. At
this point, the first arithmetic operation occurs—-the multiplication of 2 and 3. The result
is returned to eval_exp2(). and the subtraction is performed. The subtraction yields the
answer 4. Although the process may at first seem complicated, work through some other
examples to verify that this method functions correctly every time.

This parser would be suitable for use by a simple desktop calculator, as is illustrated
by the previous program. Before it could be used in a computer language, database, or
in a sophisticated calculator, however, it would need the ability to handle variables. This
is the subject of the next section.

Adding Variables to the Parser

All programming language=, many calculators, and spreadsheets use variables to store
values for later use. Before the parser can be used for such applications, it needs to be
expanded to include variables. To accomplish this, vou need to add several things to the
parser. First, of course, are the variables themselves. As stated earlier, we will use the
letters A through Z for variables. The variables will be stored in an array inside the parser
class. Each variable uses one arrav location in a 26-element array of doubles. Therefore,
add the following to the parser class:

double vars INUMVARS holds variables' valiues

You will also need to change the parser constructor, as shown here.

exp_ptr = NULL;

Chapter 40: Parsing Expressions

for{(i=0; 1i<NUMVARS; i++) vars[i] = 0.0;

As you can see, the variables are initialized to 0 as a courtesy to the user.

You will also need a function to look up the value of a given variable. Because the
variables are named A through Z, they can easily be used to index the array vars by
subtracting the ASCII value for A from the variable name. The member function
find_var(), shown here, accomplishes this:

// Return the value of a variable.
double parser::find_var{char *s)
{
1f(lisalpha(*s)){
serror(l);
return 0.0;

}
return vars|[toupper (*token)-'A"'l;

As this function is written, it will actually accept long variable names, but only the first
letter is significant. You may modify this to fit your needs.
You must also modify the atom() function to handle both numbers and variables.

The new version is shown here:

// Get the value of a number or a variable.
void parser::atom(double &result)
{
switch(tok_type) {
case VARIABLE:
result = find var (token);
get_token();
return;
case NUMBER:
result = atof (token);
get_token() ;
return;
default:
serror (0);

979

C++: The Complete Reference

Technically, these additions are all that is needed for the parser to use variables
correctly; however, there is no way for these variables to be assigned a value. Often this
is done outside the parser, but you can treat the equal sign as an assignment operator
(which is how it is handled in C++) and make it part of the parser. There are various
ways to do this. One method is to add another function, called eval_exp1(), to the
parser class. This function will now begin the recursive-descent chain. This means that
it, not eval_exp2(), must be called by eval_exp() to begin parsing the expression.
eval_exp1() is shown here:

// Process an assignment.
void parser::eval_expl{double &result)
{

int slot;

char ttok_type;

char temp_token[801];

if (tok_type==VARIABLE) {
// save old token
strcpy (temp_token, token);
ttok_type = tok_type;

// compute the index of the variable

slot = toupper (*token) - 'A';
get_token();
if (*token != '=') {

putback(); // return current token

// restore old token - not assignment
strcpy (token, temp_token) ;
tok_type = ttok_type;

}

else {
get_token(); // get next part of exp
eval_exp2(result);
vars{slot] = result;
return;

eval_exp2(result) ;

Chapter 40: Parsing Expressions 981

As you can see, the function needs to look ahead to determine whether an assignment
is actually being made. This is because a variable name always precedes an assignment,
but a variable name alone does not guarantee that an assignment expression follows.
That is, the parser will accept A = 100 as an assignment, but is also smart enough to
know that A/10 is not. To accomplish this, eval_exp1() reads the next token from the
input stream. If it is not an equal sign, the token is returned to the input stream for later
use by calling putback(). The putback() function must also be included in the parser
class. It is shown here:

// Return a token to the input stream.
void parser::putback()
{

char *t;

t = token;
for(; *t; t++) exp_ptr--;

After making all the necessary changes, the parser will now look like this.

/* This module contains the recursive descent
parser that recognizes varianles.

*/’

#include <iostream>
#include <cstdlib>
#include <cctype>
#include <cstring>
using namespace std;

enum types { DELIMITER = 1, VARIABLE, NUMEER};

const int NUMVARS = 26;

class parser {

char *exp_ptr; // points to the expression

char tokein[80); // holds current token

char tok_type; // holds token's type

double vars[NUMVARS]; // holds variables' values

void eval_expl(double &result);
void eval_exp2(double &result);

982

C++: The Complete Reference

/

{

/

eval_exp3(double &result);
eval expd (double &result);
eval_exp5(double &result);
eval_exp6 (double &result);
atom(double é&result);
get_token!(;;

puchback () ;

void serror(int error);

double

find_var(char *sj;
delim{char c¢);

Parser constructer
parser: :parser ()
{

int 1;

exp_ptr = NULL;

for(i=0; 1<NUMVARS; i++) vars[i] = 0.0;:

! Parser entry point.

double parser::eval_exp(char *exp)

double result;
exp_ptr = exp;

get_token();

1t (! *token) {
serror(2); // no expression present
return 0.0;

—

_expl(result);

(*token) serror{d); // last token must be
return result;

eva
i

o

null

Chapter 40: Parsing Expressions 983

i Process an

vold parser: o

AN

5.0T;

char ttok_tvy

char temp token 705 ;

stropy (temp token,

trok _type = toh _type;

get_tokenti;

if(*token = '="}

putbhack{};

/) restore

streopy (token,

tok type = trok_

else |

get_zokent(); // get next part of exp

varsisiot] = result:

return;

// Add or subtract Lwo ULerms.

eval_exp? (double &result)

void parser::

register char op;
double temp:

eval_exp3(result);

while((cp = *token) == '=' [} oD
get_token();

984

\

eval_exp3 (temp) ;
switch(op) {
case '-':
result = result
break;

case '+':

C++: The Complete Reference

temp;

result = result + temp;

break;

// Multiply or divide two factors.

void parser:
{
register char op;
double temnp;

eval_expd (result);
while((op = *token) ==
get_token

’

switch(

()
eval exp4(temp
p) |
case '*!
result
break;

case '/':

result
break;
case '%':

i

result = (int)

break;

// Process an exponent.
void parser:

double temp, ex;
register int t;

result %

reval_exp3 (double &result)

result * temp;

result / temp;

(int)

eval_expd (double &result)

temp;

Chapter 40: Parsing Expressions

eval_expb(result) ;
if (*token== '"') {
get_token();
eval_expd (temp) ;
ex = result;
if(temp==0.0) {
result = 1.0;
return;
}
for(t=(int)temp-1; t>0; --t) result = result * (double)ex;

// Evaluate a unary + or -.
void parser::eval_expS5(double &result)
{

register char op;

op = 0;

if ((tok_type == DELIMITER) && ~token=='+' || *token == '-") {
op = *token;
get_token();

}

eval_expb (result);

if(op=='-"') result = -result;

// Process a parenthesized expression.
void parser::eval_expb (double &result)
{
1f((*token == ' (")) {
get_token() ;
eval_exp2 (result);
if(*token !'= ')"')
serrcr (1) ;
get_token();
}

else atom(result) ;

// Get the value of a number or a variable.
void parser::atom(double &result)

986 C++: The Complete Reference

switch(tok_type) {

case VARIABLE:
result = finé var (token) ;
get_token() ;
return;

case NUMBER:
result = atof (token);
get_token () ;
return;

default:
serror{(0) ;

// Return a token to the input stream.
vold parser: :putback()
{

char *t;

t = token;
for(; *t; t++) exp_ptr--;

// Display a syntax error.
void parser::serror (int error)
{
static char *e[]= {
"Syntax Error",
"Unbalanced Parentheses".
"No expression Present"
b
cout << eferror] << endl;

// Obtain the next token.
void parser::get_token ()
{

register char *temp;

tok_type = 0;
temp = token;

Chapter 40: Parsing Expressions

*temp = 'A\0';
1f (! *exp_ptr) return; // at end of expression
while(isspace(*exp_ptr)) ++exp_ptr; // skip over white space

if({strchr("+-*/%"=()", *exp_ptr)){
tok_type = DELIMITER;
// advance to next char
*tempt++ = *exp_ptr++;

}

else if (isalpha{*exp_ptr)) {
while(!isdelim(*exp_ptr)) *temp++ = *exp_ptr++;
tok_type = VARIABLE;

}

else if(isdigit(*exp_ptr)) {
while(!isdelim(*exp_ptr) i *temp++ = *exp_pti++;
tok_type = NUMBER;

*temp = '\0';

// Return true if ¢ is a delimiter.
int parser::isdelim(char c)
{
if (strchr(" +-/*%"=()", c) |i c==9 || c=="\r' || c==0)
return 1;
return 0;

// Return the value of a variable.
double parser::find _var(char *s)
{
if(!isalpha(*s)){
serror(l);
return 0.0;
}

return vars|[toupper (*token)-'A"'];

988 C++: The Complete Reference

To try the enhanced parser, you may use the same main() function that you used
for the simple parser. With the enhanced parser, you can now enter expressions like

A=10/4
A-B
C=A*F-21)

___| syntax Checking in a Recursive-Descent Parser

Before moving on to the template version of the parser, let's briefly look at syntax
checking. In expression parsing, a syntax error is simply a situaticn in which the input
expression does not conform to the strict rules required by the parser. Most of the time,
this is caused by human error, usually typing mistakes. For example, the following
expressions are not valid for the parsers in this chapter:

10%8
(10~ 5) *9)
/8

The first contains two operators in a row, the second has unbalanced parentheses, and
the last has a division sign at the start of an expression. None of these conditions is
allowed by the parsers. Because syntax errors can cause the parser to give erroneous
results, you need to guard against them.

As you studied the code of the parsers, you probably noticed the serror() function,
which is called under certain situations. Unlike many other parsers, the recursive-
descent method makes syntax checking easy because, for the most part, it occurs in
atom(), find_var(), or eval_exp6(), where parentheses are checked. The only problem
with the syntax checking as it now stands is that the entire parser is not terminated on
syntax error. This can lead to multiple error messages.

The best way to implement the serror() function is to have it execute some sort of
reset. For example, all C++ compilers come with a pair of companion functions called
setjmp() and longjmp(). These two functions allow a program to branch to a different
function. Therefore, serror() could execute a longjmp() to some safe point in your
program outside the parser.

Depending upon the use you put the parser to, you might also find that C++'s
exception handling mechanism (implemented through try, catch, and throw) will be
beneficial when handling errors.

If you leave the code the way it is, multiple svntax-error messages may be issued.
This can be an annoyance in some situations but a blessing in others because multiple
errors may be caught. Generally, however, you will want to enhance the syntax checking
before using it in commercial programs.

Chapter 40: Parsing Expressions

____| Building a Generic Parser

The two preceding parsers operated on numeric expressions in which all values were
assumed to be of type double. While this is fine for applications that use double values,
it is certainly excessive for applications that use only integer values, for example. Also,
by hard-coding the type of values being evaluated, the application of the parser is
unnecessarily restricted. Fortunately, by using a class template, it is an easy task to
create a generic version of the parser that can work with any type of data for which
algebraic-style expressions are defined. Once this has been done, the parser can be used
both with built-in types and with numeric types that you create.

Here is the generic version of the expression parser.

// A generic parser.

#include <iostream>
#include <cstdlib>
#include <cctype>
#include <cstring>
using namespace std;

enum types { DELIMITER = 1, VARIABLE, NUMBER} ;
const int NUMVARS = 26;

template <class PType> class parser {
char *exp_ptr; // points to the expression
char token(80]; // holds current token
char tok_type; // holds token' type
PType vars [NUMVARS];

variable's values

void eval_expl (PType &result);
void eval_exp2 (PType &resuit
void eval_exp4d (PType &result

void eval_expS (PType &result

;i

()
()i
void eval_ exp3 (PType &result);
() ;
()
()

void eval_exp6 (PType &result);
void atom(PType &result);
void get_token(), putback()
void serror (int error);

PType find_var (char *s):

int isdelim{char c¢);

public:

990 C++: The Complete Reference

parser () ;
PType eval_exp(char *exp);
I

// Parser constructor.
template <class PType> parser<PType>: :parser ()
{

int 1i;
exp_ptr = NULL;
for (i=0; i<NUMVARS; i++) vars[i] = (PType) O0;
// Parser entry point.
template <class PType> PType parser<PType>::eval_exp{char *exp)

{
PType result;

exp_ptr = exp;
get_token();
if (! *tcoken) (

serror(2); // ro expression present

return (PType) 0;

}
eval_expl (result);
if(*token) serror(0); // last token must be null

return result;

// Process an assignment.
template <class PType> void parser<PType>: :eval_expl (PType &result)
{

int slot;

char ttok_type;

char temp_token[80];

if (tok_type==VARIABLE) ({
// save old token
strcpy (temp_token, token);
ttok_type = tok_type;

Chapter 40: Parsing Expressions 991

// compute the index of the variable
slot = toupper{*token) - 'A';

get_token () ;

if(*token != '=') {
putback(); // return current token
// restore old token - not assignment

strcpy (token, temp_token);
tok_type = ttok_type;
}
else {
get_token(); // get next part of exp
eval _exp2(result);
vars[slot] = result;
return;

eval_exp2{result);

// Add or subtract two terms.
template <class PType> void parser<PType>::eval_exp2 (PType &result)
{

register char op;

PType temp;

eval_exp3(result) ;

while((op = *token) == '+' || op == '-") {

’

get_token ()
eval_exp3 (temp) ;
switch(op) {
case '-':
result = result - temp;
break;
case '+':
result = result + temp;
break;

992 C++: The Complete Reference

// Multiply or divide two factors.
template <class PType> void parser<PType>::eval_exp3 (PType &result)
{

register char og;

PType temp;

eval_expd (result) ;
while((op = *token) == '*' || op == '/' || op =

’

get_token()
eval_expd (temp) ;
switch(op) {
case '*':
result = result * temp;
break;
case '/':
result = result / temp;
break;
case '$':
result = {(int) result % {(int) temp;
break;

// Process an exponent.
template <class PType> void parser<PType>::eval_expd (PType &result)
{

PType temp, ex;

register int t;

eval_expS(result) ;
if (*token== '~') {
get_token () ;
eval_expd {(temp) ;
ex = result;
if{temp==0.0) {
result = (PType) 1;
return;
}
for(t=(int)temp-1; t>0; --t) result = result * ex;

Chapter 40: Parsing Expressions

/

/ Evaluate a unary + or -.

template <class PType> vold parser<PType>::eval_expb (PType &result)
{

S

register char op;

if({{tok_type == DELIMITER) && *token=='+' || *token

Il

I

¢
.

get_token() ;
}
eval_expb (result);

if(op=='-"') result = -result;

i

Process a parenthesized expression.
template <class PType> vold parser<PType>::eval_exp6 (PType &result)
1
if({*token == '(')) {

get_token () ;

eval_exp2 (result);

if(*token != ') ")

serror(l);

get_token () ;

}

else atom(result);

// Get the value of a number or a variabie.
template <class PType> void parser<PType>::atom(PType &result)
{
switch(tok_type) {
case VARIABLE:

resu_t = find var{token};
get_token();
return;
case NUMBER:
resu.t = (PType) atof (token);

get_token();

return;
default:

serror (0);

994 C++: The Complete Reference

// Return a token to the input stream.
template <class PType> void parser<PType>::putback()
{

char *t;
t = token;
for(; *t; t++) exp_ptr--;

// Display a syntax error.
template <class PType> void parser<PType>::serror(int error)
{
static char *el[;= {
"Syntax Error",
"Unbalanced Parentheses",
"No expressiori Present"
Y

cout << elerror] << endl;

// Obtain the next token.
template <class PType> void parser<PType>::get_token()
{

register char *temp;

tok_type = 0;
temp = token;
*temp = '\0';

if (I*exp_ptr) return; // at end of expression
while(isspace(*exp_ptr)) ++exp _ptr; // skip over white space

if (strchr("+-*/%"=()", *exp_ptr).{
tok_type = DELIMITER;
// advance to next char
*temp++ = *exp_rtr+-+;
}
else if(isalpha{*exp_ptr)) {
while(!isdelim(*exp_ptr)) *temp++ = *exp_ptr++;

Chapter 40: Parsing Expressions

tok_typs = VARIABLE;

}

else if(isdigit{*exp ptr)) {
while(!isdelim(*exp_ptr)) *temp++ = *exp_ptr++;
tok_typs = NUMBER;

// Return true if ¢ is a delimiter.
template <class PType> int parser<PType>::isdelim(char c)
{
if(strchr (" +-/*%"=()", <) || ¢==9 || c=="\r' || c==0)
return 1;
return 0;

// Return the value of a variable.
template <class PType> PType parser<PType>::find_var (char *s)
{
if(!isalpha(*s)){
serror (1) ;
return (PType) 0;
}

return vars toupper (*token)-'A'];

As yot can see, the type of data now operated upon by the parser is specified by the
generic type PType. The following main() function demonstrates the generic parser.

int main()

{
char expstri80];

// Demonstrate floating-point parser.
parser<dcuble> ob;

cout << "Floating-point parser. ";
cout << "Enter a period to stop\n";
for(;;) |

995

996 | C++: The Complete Reference

cout << "Enter expression: ";

cin.getline{expstr, 79);

if(*expstr=="'."') break;

cout << "Answer is: " << ob.eval_exp(expstr) << "\n\n";
}

cout << endl;

// Demonstrate integer-based parser.

parser<int> Iob;

cout << "Integer parser. "
cout << "Enter a period to stopin";
for(;;) {
cout << "Enter expression: ";
cin.getline(expstr, 79);
if (*expstr=='."') break;
cout << "Answer 1is: " << Iob.eval_exp(expstr) << "\n\n";

return 0;

Here is a sample run.

Floating-point parser. Enter a period to stop
Enter expression: a=10.1
Answer is: 10.1

Enter expression: b=3.2
Answer is: 3.2

Enter expression: a/b
Answer 1is: 3.15625

Enter expression:
Integer parser. Enter a period to stop
Enter expression: a=10

Answer is: 10

Enter expression: b=3

Chapter 40: Parsing Expressions 997

Answer is: 3

Enter expression: a/b
Answer is: 3

Enter expression:

As you can see, the floating-point parser uses floating-point values, and the integer parser
uses integer values.

__| Some Things to Try

As mentioned early on in this chapter, only minimal error checking is performed by the
parser. You might want to add detailed error reporting. For example, you could highlight
the point in the expression at which an error was detected. This would allow the user
to find and correct a syntax error.

As the parser now stands it can evaluate only numeric expressions. However, with
a few additions, it is possible to enable the parser to evaluate other types of expressions,
such as strings, spatial coordinates, or complex numbers. For example, to allow the
parser to evaluate string objects, you must make the following changes:

1. Define a new token type called STRING.
2. Enhance get_token() so that it recognizes strings.
3. Add a new case inside atom() that handles STRING type tokens.

After implementing these steps, the parser could handle string expressions like these:

a ="one'
b = "two"
c=a+b

The result in ¢ should be the concatenation of a and b, or "onetwo".

Here is one good application for the parser: create a simple, pop-up mini-calculator that
accepts an expression entered by the user and then displays the result. This would make an
excellent addition to nearly any commercial application. If you are programming for
Windows, this would be especially easy to do.

